Matrices III Cheat Sheet（A－Level Only）

Solving Systems of Three Simultaneous Equations

放ee simultaneous equations containing three unknowns can be rewritten and solved using matrices．

$$
\begin{aligned}
a x+b y+c z & =p \\
d x+e y+f z & =q \\
g x+h y+i z & =r
\end{aligned}
$$

The above equations can be rewritten a

When det $\mathrm{A}=0$ ，the coefficient matrix A is a singular matrix and there is either no solution or infinitely many solutions．When $\operatorname{det} A \neq 0$ ，the matrix is non－singular and there is a unique solution to the equations．
For a non－singular matrix of coefficients，A

Example 1：For the following system of simultaneous equations，a．）express it as a matrix equation；b．）show hether there is a following system of simultaneous equations，

$$
\begin{aligned}
4 x+y+2 z & =16 \\
3 x+4 y-2 z & =24
\end{aligned}
$$

$$
-x+y+z=7
$$

$\left.\left.\begin{array}{|l|c|}\hline \text { a．）Rewrite the equations as matrices．} & A=\left[\begin{array}{ccc}4 & 1 & 2 \\ 3 & 4 & -2 \\ -1 & 1 & 1\end{array}\right] \\ A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}16 \\ 24 \\ 7\end{array}\right]\end{array}\right] \begin{array}{rl}\operatorname{det} A=37\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
& \text { 明: }
\end{aligned}
$$

Geometric Meaning of the Solution of Three Simultaneous Equations

 space．Single Point

he three planes intersect at a single point，so there is a unique solution．This is the only case where the coefficient matrix A is non－singular．The system of equations is consistent．

Sheaf and Coincident Planes

The planes intersect at either a line or a plane，so there are infinitely many solutions．The coefficient matrix is singular and the system of equations is consistent．
a）When all three equations describe the same plane，the solution is the plane itself．

Ref：CUP AQA A Level Further Mathematics Book 2
b）When two of the equations describe the same plane and the third plane is not parallel to this plane， the planes will intersect along a line．

Ref：CUP AQA A Level Further Mathematics Book 2

c）When all three equations describe different planes，but they all intersect along a line，they form sheaf．

Ref．CUP AQA A Level Further Mathematics Book 2

Triangular Prism and Paraliel Planes

The coefficient matrix A is singular and the three planes do not intersect，so there are no unique solutions．
a）When there are two distinct parallel planes，there are no solutions．The third plane can be（1）the same as one of the other two planes，（2）parallel to both planes，or（3）cut through both planes．It can intersect the planes along different lines．The system of equations is inconsistent．

b）A triangular prism is where each pair of planes intersects along a straight line．The three lines of intersection are parallel to each other．

Ref：CUP AQA A Level Further Mathematics Book 2
Example 2：For the following system of equations

$$
\begin{aligned}
x-3 y-3 z & =8 \\
2 x-y+z & =6 \\
3 x+y+5 z & =-7
\end{aligned}
$$

Show that a．）there is no unique solution；b．）the system is inconsistent．c．）Interpret the geometric meaning of this system
a．）Find the determinant of the matrix of
$A=\left[\begin{array}{ccc}1 & -3 & -3 \\ 2 & -1 & 1 \\ 3 & 1 & 5\end{array}\right]$
$\operatorname{det} A=0$（using calculator），so the matrix singular and there is no unique solution． Equation（1）：$x-3 y-3 z=8$ Equation（2）： $2 x-y+z=6$ Equation（3）： $3 x+y+5 z=-7$
Equation（©：© $\odot \times 2: 2 x-6 y-6 z=16$ Equation（9：©（）－（©： $5 y+7 z=-10$

Equation ©：© $\times 3: 3 x-9 y-9 z=24$ Equation（®）：（3－®： $10 y+14 z=-31$ Equation ©： $5 y+7 z=-10$ Equation ©： $10 y+14 z=-3$ $20 \neq-31$ ，so the sys
The system is inconsistent，and no rows are multiples of other rows，so there are no parallel
planes．The three planes form a triangular prism．www．pmt．education
PMTEducation

